Taitai6769/iStock
Ecmweb 24183 Thinkstockphotos 497253887 Industrial Motors Webversion 2
Ecmweb 24183 Thinkstockphotos 497253887 Industrial Motors Webversion 2
Ecmweb 24183 Thinkstockphotos 497253887 Industrial Motors Webversion 2
Ecmweb 24183 Thinkstockphotos 497253887 Industrial Motors Webversion 2
Ecmweb 24183 Thinkstockphotos 497253887 Industrial Motors Webversion 2

Tip of the Week: Bond Your Motors

Jan. 2, 2018
Don’t ground your motors; instead, ensure the motor installation is properly bonded.

One solution that is sometimes put forth to prevent a repeat episode of catastrophic failure of motor bearings is to ensure the motor is “properly grounded.” So a ground rod is driven next to the motor, and the monthly PM is updated to include visually inspecting the connections.

The motor is not a separately derived source (see Art. 100 definition in the National Electrical Code). It’s a load. So right away, we see this “solution” is not following the requirements of NEC Art. 250 because this portion of the Code has you ground sources but bond loads [Sec. 250.4].

Section 250.4 can be a bit confusing because for grounded systems, we’re told to connect such things as metallic raceway to earth [250.4(A)(2)]; but this is achieved via the equipment grounding conductor (EGC), which is actually a bonding conductor that is ultimately grounded. The metallic raceway itself is part of the EGC.

Let’s stop to think about what this ground connection at the motor does. That ground rod is going to provide a high-impedance path for stray current to get back to the source. The path through the motor bearings is of a much lower impedance. If you calculate the parallel currents involved, you’ll find that ground rod is pointless. And it is probably a tripping hazard.

Don’t ground your motors (see Art. 100 definition of “ground”). Instead, ensure the motor installation is properly bonded (see Art. 100 definition of “bonding”).

Your goal is to reduce the amount of undesired current going through the bearings. Although it is not true that electricity “takes the path of least resistance,” it is true that much more of it will flow through a low-impedance path than through a parallel high-impedance path.

By creating a metallic path (via bonding jumpers) to the EGC (which is actually bonding the equipment), you provide the undesired electrical current a very low-impedance path back to its source.

To understand this concept, just draw a simple parallel circuit with two resistors. Label one resistor “1 ohm” and the other resistor “2,000 ohms.” Now assuming a 100V power supply, calculate the current flowing through each resistor. In the real world, there is a much greater difference in impedances, but this simple exercise helps illustrate why you bond (low impedance) your motors rather than ground (high impedance) them.

About the Author

Mark Lamendola

Mark is an expert in maintenance management, having racked up an impressive track record during his time working in the field. He also has extensive knowledge of, and practical expertise with, the National Electrical Code (NEC). Through his consulting business, he provides articles and training materials on electrical topics, specializing in making difficult subjects easy to understand and focusing on the practical aspects of electrical work.

Prior to starting his own business, Mark served as the Technical Editor on EC&M for six years, worked three years in nuclear maintenance, six years as a contract project engineer/project manager, three years as a systems engineer, and three years in plant maintenance management.

Mark earned an AAS degree from Rock Valley College, a BSEET from Columbia Pacific University, and an MBA from Lake Erie College. He’s also completed several related certifications over the years and even was formerly licensed as a Master Electrician. He is a Senior Member of the IEEE and past Chairman of the Kansas City Chapters of both the IEEE and the IEEE Computer Society. Mark also served as the program director for, a board member of, and webmaster of, the Midwest Chapter of the 7x24 Exchange. He has also held memberships with the following organizations: NETA, NFPA, International Association of Webmasters, and Institute of Certified Professional Managers.

Voice your opinion!

To join the conversation, and become an exclusive member of EC&M, create an account today!

Sponsored Recommendations

Electrical Conduit Comparison Chart

CHAMPION FIBERGLASS electrical conduit is a lightweight, durable option that provides lasting savings when compared to other materials. Compare electrical conduit types including...

Fiberglass Electrical Conduit Chemical Resistance Chart

This information is provided solely as a guide since it is impossible to anticipate all individual site conditions. For specific applications which are not covered in this guide...

Considerations for Direct Burial Conduit

Installation type plays a key role in the type of conduit selected for electrical systems in industrial construction projects. Above ground, below ground, direct buried, encased...

How to Calculate Labor Costs

Most important to accurately estimating labor costs is knowing the approximate hours required for project completion. Learn how to calculate electrical labor cost.